

AMB 红外测温解决方案

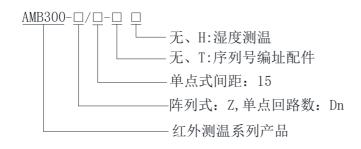
安装使用说明书 V1.2

申明

版权所有,未经本公司之书面许可,此手册中任何段落、章节内容均不得摘抄、 拷贝或以任何形式复制、传播,否则一切后果由违者自负。

本公司保留一切法律权利。

本公司保留对本手册所描述之产品规格进行修改的权利,恕不另行通知。订货前,请垂询当地代理商以获悉本产品的最新规格。


目录

1	概述	1
2	型号规格	1
3	技术参数	2
4	外形结构	3
	4.1 外形尺寸	3
	4.2 安装方式	4
	4.3 采集器连接方式	
	4.3.1 网线式连接方式	4
	4.3.2 二总线蚂蚁夹式安装法	5
5	使用操作指南	5
	5.1 按键说明	5
	5.2 按键操作界面	5
6	通信说明	10
	6.1 概述	
	6.2 协议	
	6.2.1 数据帧格式	10
	6.2.2 地址(Address)域	10
	6.2.3 功能(Function)域	10
	6.2.4 数据(Data)域	10
	6.2.5 错误校验(Check)域	11
	6.3 错误校验的方法	
	6.4 通讯地址表	
	6.5 通讯应用	
	6.5.1 读数据	17
	6. 5. 2 写数据	18
7	常见故障的诊断、排查方法	18
	7.1 装置上电后工作不正常	18
	7.2 RS-485 通信不正常	18
	7.3 无线通信不正常	18
访	胡井修订记录	19

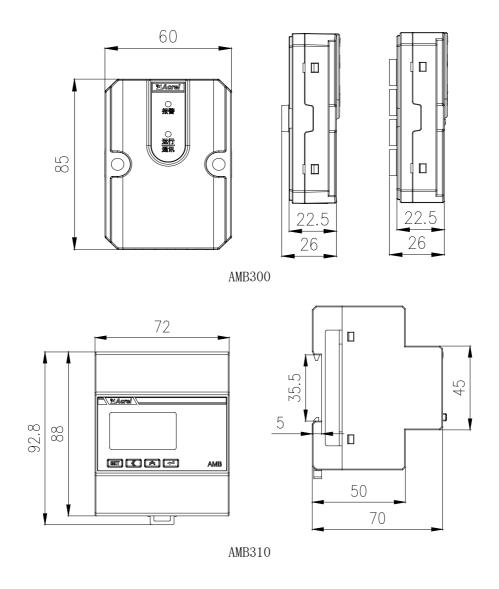
1 概述

AMB 红外测温解决方案是一款非接触式红外测温装置。该产品能够解决母线槽安全测温、精确测温问题,实时把连接器中每相温度数据上传后台,实行监测、预警信息,提示管理人员应对报警点予以重视或采取必要的预防措施。装置主要应用于各种领域的密集绝缘母线连接器的在线温度监控系统。

2 型号规格

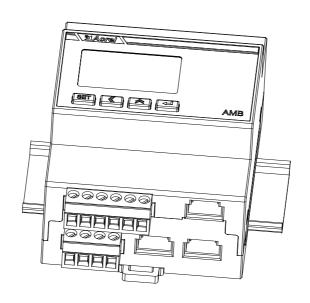
名称	型号	功能描述
	AMB300-Z	二总线通讯、实时在线检测 1 个大范围阵列温度。需搭配红外测温采集器使用,由采集器供电。
	AMB300-Z-T	二总线通讯、实时在线检测 1 个大范围阵列温度。 <mark>提供二总线蚂蚁夹接口</mark> 。需搭配红外测温采集器使用,由采集器供电。
	AMB300-Z-H	二总线通讯、实时在线检测 1 个大范围阵列温度、连接器处湿度。需搭配红外测温采集器使用,由采集器供电。
	AMB300-Z-TH	二总线通讯、实时在线检测 1 个大范围阵列温度、连接器处湿度。 <mark>提供二总线蚂蚁夹接口</mark> 。需搭配红外测温采集器使用,由采集器供电。
4 红外测温模块	AMB300-D1	二总线通讯、实时在线检测 1 个小范围单点温度。需搭配红外测温采集器使用,由采集器供电。
红月奶価快奶	AMB300-D1-T	二总线通讯、实时在线检测 1 个小范围单点温度。 <mark>提供二总线蚂蚁夹接口</mark> 。需搭配红外测温采集器使用,由采集器供电。
	AMB300-D1-H	二总线通讯、实时在线检测 1 个小范围单点温度、连接器处湿度。需搭配红外测温采集器使用,由采集器供电。
	AMB300-D1-TH	二总线通讯、实时在线检测1个小范围单点温度、连接器处湿度。 <mark>提供二总线蚂蚁夹接口</mark> 。需搭配红外测温采集器使用,由采集器供电。
	AMB300-D4/15	二总线通讯、实时在线检测 4 个小范围单点温度,每个探头间距 15mm。 需搭配红外测温采集器使用,由采集器供电。
	AMB300-D4/15-T	二总线通讯、实时在线检测 4 个小范围单点温度,每个探头间距 15mm。 提供二总线蚂蚁夹接口。需搭配红外测温采集器使用,由采集器供电。
红外测温采集器	AMB310	2 路下行二总线通讯,最高可采集 160 台红外测温模块,2 路 RS485 通讯至监控系统或触摸屏,DC 24-30V 供电,2 路 DO 报警。

3 技术参数

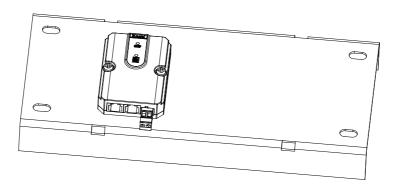

仪	表型号	AMB300-Z	AMB300-D4	AMB300-D1	
	功能	测量范围温度,显示最高的4路、湿度(可选)	4 路温度	1 路温度、湿度(可选)	
测量	范围	温度-10℃~150℃,湿度 0%RH-95%RH	温度-10℃~150℃	温度-10℃~150℃,湿度 0%RH-95%RH	
	精度	(-10℃~85℃)温度± 3℃,(85℃~150℃)温 度±5℃,湿度±5%RH	(-10℃~85℃)温度± 3℃, (85℃~150℃) 温度±5℃	(-10℃~85℃)温度± 3℃,(85℃~150℃)温度 ±5℃,湿度±5%RH	
辅	助电源	AMB310 供电	AMB310 供电	AMB310 供电	
	通讯	二总线	二总线	二总线	
防	护等级	IP51	IP51	IP51	
污	染等级	2	2	2	
电磁兼	抗静电干扰	4级	4级	4级	
容性	抗电快速瞬 变脉冲群	4级	4级	4 级	
	整机温度	工作: -20℃~85℃ 贮存: -40℃~70℃	工作: -20℃~85℃ 贮存: -40℃~70℃	工作: -20℃~85℃ 贮存: -40℃~70℃	
环境	湿度	相对湿度≤93%, 无凝露	相对湿度≤93%,无凝露	相对湿度≤93%,无凝露	
	海拔	≤2000m	≤2000m	≤2000m	

仪	表型号	AMB310				
功能	通讯	2 路下行二总线通讯, 最高可采集 160 台模块的数据, 2 路 RS485 通讯至监控系				
切形	迪 爪	统或触摸屏,将采集的温度数据上传至后台或触摸屏。				
辅助电源		DC 24-30V (默认推荐使用 30V)				
	通讯	二总线、RS485				
防	护等级	IP51				
污	染等级	2				
电磁兼	抗静电干扰	4 级				
容性	抗电快速瞬	4 级				
台江	变脉冲群	4 级				
	整机温度	工作: -20℃~55℃; 贮存: -40℃~70℃				
环境	湿度	相对湿度≤93%,无凝露				
	海拔	≤2000m				

4 外形结构

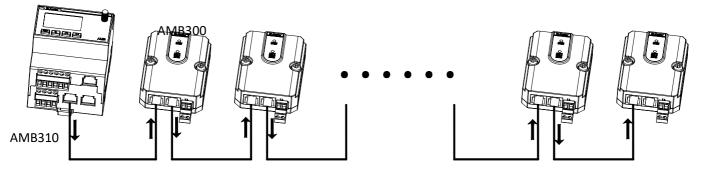

4.1 外形尺寸

单位: mm



4.2 安装方式

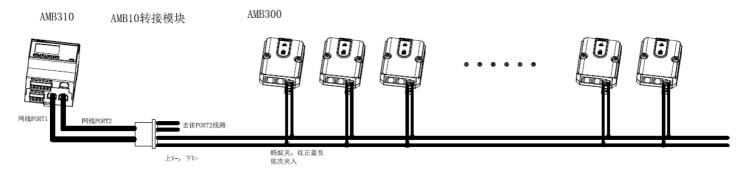
AMB310采用 DIN35mm 导轨式安装, AMB300采用螺丝固定安装。


AMB310

AMB300

4.3 采集器连接方式

4.3.1 网线式连接方式


上图箭头代表 24-30V 信号输出方向,通讯接口需要使用 RJ45 网络屏蔽线,上图 AMB300 模块的左侧 RJ45 接口为信号进线端口,右侧 RJ45 端口为信号出线端口,用于连接下一个模块的进线端口。

安装注意事项:

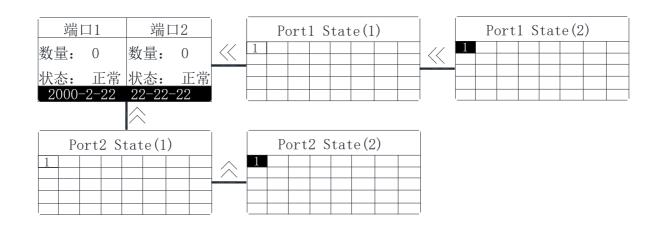
注: 1、组网网线需采用超6类无氧铜材质以上级别的线材。

2、一只采集器(AMB310)下行二总线有两路接口,每路接口最多安装≤80 只红外测温模块,并且每路二总线线长≤250米。

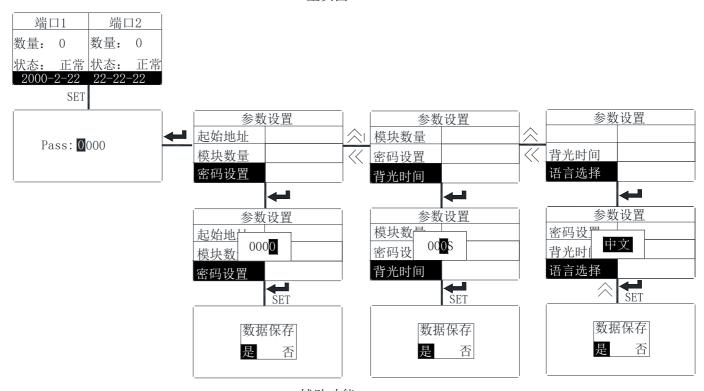
4.3.2 二总线蚂蚁夹式安装法

蚂蚁夹适配 1.5mm 方线。使用时,一根为 V+、一根为 V-。使用时,蚂蚁夹适配 1.5m2 铜导线;

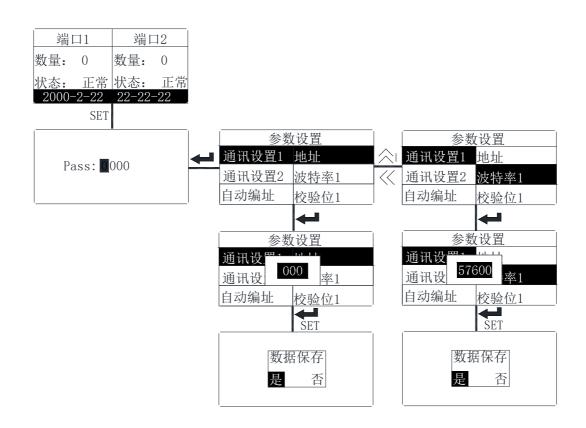
5 使用操作指南

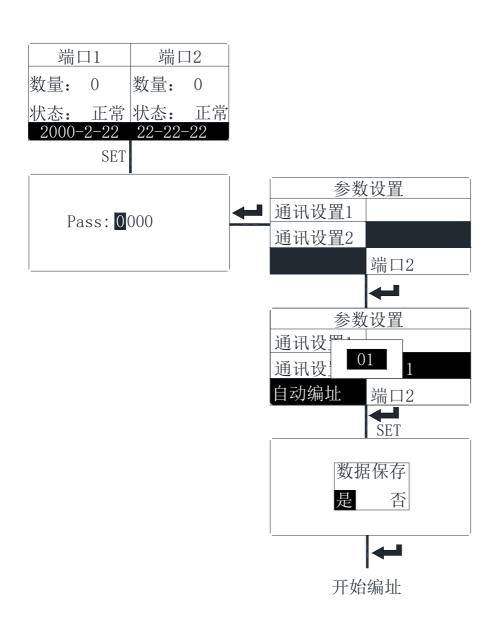

5.1 按键说明

非编程模式下:按该键进入编程模式,装置提示输入密码,或返回上一级编程模式下:用于返回上一级菜单,或退出编程模式。				
左键、入上键	非编程模式下:用于切换显示界面; 编程模式下:用于同级菜单的切换和光标的移位。			
回车键	编程模式下:用于菜单项目的选择确认,即进入下一级菜单。			


5.2 按键操作界面

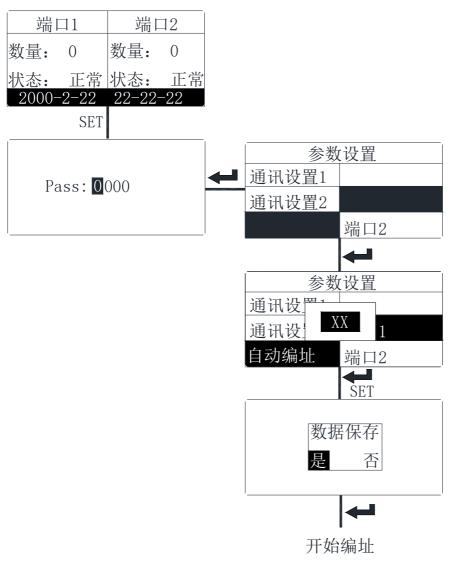
红外测温采集器


开机界面


主页面

辅助功能

通讯参数选项界面


自动编址

波特率界面默认为 57600,可通过上键调整选项为: 2400、4800、9600、19200、38400; 校验位默认界面为 none (无校验),可通过上键调整选项为 odd (偶校验)、even (奇校验)。

自动编址界面设置:如图上所示,自动编址时,设置初始地址为01;按回车键回到选项界面,按设置键进入存储界面,选择'是',即保存完毕。若此时回路里连接两个模块,则模块数量显示为2。切换到有无故障界面,如果拔掉一个模块的连接,等待几秒后,相应模块显示位置打阴影;如下图所示,如有模块掉线,主页面相应显示位置为黑色阴影;

	Port1 State(2)							
1								

黑色阴影代表仪表离线

自定义起始地址兼手动编址

自定义起始地址编址说明:给单个温度模块编址,编制范围为 1-80,不可重复编址。模块单独链接 AMB310,选择自动编址,原 01 改为想要手动输入的地址位号,点击自动编址;序列号编址:

序列号编址采用仪表序列号为索引进行编址,可靠性较高,便于查线和维护;相应的,序列号编址对施工和调试要求较高,需要严格按规定步骤和逻辑进行施工与配置;如需要施工及调试细则请联系业务员或相关工程师。

6 通信说明

6.1 概述

AMB300 只用于内部二总线通讯, AMB310 采用 Modbus-RTU 协议: 默认参数如下表:

通讯方式	波特率	数据位	校验位
485	57600	8	N

注: n表示无校验位;

错误检测: CRC16 (循环冗余校验)

6.2 协议

当数据帧到达终端设备时,它通过一个简单的"端口"进入被寻址到的设备,该设备去掉数据帧的"信封"(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将自己生成的数据加入到取得的"信封"中,把数据帧返回给发送者。返回的响应数据中包含了以下内容:终端从机地址(Address)、被执行了的命令(Function)、执行命令生成的被请求数据(Data)和一个 CRC 校验码(Check)。发生任何错误都不会有成功的响应,或者返回一个错误指示帧。

6.2.1 数据帧格式

地址	功能	数据	校验
8-Bits	8-Bits	NX8-Bits	16-Bits

6.2.2 地址 (Address) 域

地址域在帧首,由一个字节(8-Bits,8位二进制码)组成,十进制为0~255,在我们的系统中只使用1~247,其它地址保留。这些位标明了用户指定的终端设备的地址,该设备将接收来自与之相连的主机数据。同一总线上每个终端设备的地址必须是唯一的,只有被寻址到的终端才会响应包含了该地址的查询。当终端发送回一个响应,响应中的从机地址数据便告诉了主机哪台终端正与之进行通信。

6.2.3 功能(Function)域

功能域代码告诉了被寻址到的终端执行何种功能。下表列出了该系列仪表用到的功能码,以及它们的意义和功能。

代码(十六进制) 意义		行为
03Н	读取保持寄存器	在一个或多个保持寄存器中取得当前的二进制值
10H	预置多寄存器	把具体的的二进制值装入一连串的保持寄存器

6.2.4 数据(Data)域

数据域包含了终端执行特定功能所需的数据或终端响应查询时采集到的数据。这些数据可能是数值、参量地址或者设置值。

例如:功能域告诉终端读取一个寄存器,数据域则需要指明从哪个寄存器开始及读取多少个数据,内嵌

的地址和数据依照类型和从机之间的不同而内容有所不同。

6.2.5 错误校验(Check)域

该域采用 CRC16 循环冗余校验,允许主机和终端检查传输过程中的错误。有时由于电噪声和其它干扰,一组数据从一个设备传输到另一个设备时,在线路上可能会发生一些改变,错误校验能够保证主机或从机不去响应那些发生改变的数据,这就提高了系统的安全性、可靠性和效率。

6.3 错误校验的方法

错误校验(CRC)域占用两个字节,包含了一个 16 位的二进制值。CRC 值由传输设备计算出来,然后附加到数据帧上,接收设备在接受数据时重新计算 CRC 值,然后与接收到的 CRC 域中的值进行比较,如果这两个值不相等,就发生了错误。

CRC 运算时,首先将一个 16 位的寄存器预置为全 1,然后连续把数据帧中的每个字节中的 8 位与该寄存器的当前值进行运算,仅仅每个字节的 8 个数据位参与生成 CRC,起始位和停止位以及可能使用的奇偶位都不影响 CRC。在生成 CRC 时,每个字节的 8 位与寄存器中的内容进行异或,然后将结果向低位移位,高位则用"0"补充,最低位(LSB)移出并检测,如果是 1,该寄存器就与一个预设的固定值(0A001H)进行一次异或运算,如果最低位为 0,不作任何处理。

CRC 生成流程:

- 1 预置一个 16 位寄存器为 OFFFFH(全1), 称之为 CRC 寄存器。
- 中的第一个字节的 8 位与 CRC 寄存器中的低字节进行异或运算,结果存回 CRC 寄存器。
 - 2 把数据帧中的第一个字节的 8 位与 CRC 寄存器中的低字节进行异或运算,结果存回 CRC 寄存器。
 - 3 将 CRC 寄存器向右移一位,最高位填 0,最低位移出并检测。
- 4 如果最低位移出为 0: 重复第 3 步(下一次移位);如果最低位移出为 1:将 CRC 寄存器与一个预设固定值(0A001H)进行异或运算。
 - 5 重复第 3 步和第 4 步直到 8 次移位。这样就处理完了一个完整的 8 位。
 - 6 重复第2步到第5步来处理下一个8位,直到所有的字节处理结束。
 - 7 最终 CRC 寄存器的值就是 CRC 的值。

此外还有一种利用查表计算 CRC 的方法,它的主要特点是计算速度快,但是表格需要较大的存储空间,该方法 此处不再赘述,请查阅相关资料。

6.4 通讯地址表

AMB310 通讯参量地址表

序号	地址	变量	备注	长度(字节)	单位	数据类型
1	0x0000	地址 1	R/W	2		u16
2	0x0001	波特率 校验位	R	2	高字节 波特率 低 校验位	u16
3	0x0002	地址 2	R/W	2		u16
4	0x0003	波特率 校验位	R	2	高字节 波特率 低 校验位	u16
5	0x0004	年月	R/W	2	高字节 年 低 月	u16
6	0x0005	日时	R/W	2	高字节 日 低 时	u16

7	0x0006	分秒	R/W	2	高字节 分 低 秒	u16
8	0x0007	第一路起始地址	R/W	2		u16
9	0x0008	第一路模块数量	R/W	2		u16
10	0x0009	第二路起始地址	R/W	2		u16
11	0x000A	第二路模块数量	R/W	2		u16
12	0x000B	自动编址使能	R/W	2	写 0x6601 对第一路自动编址、写 0x8801 对第二路自动编址	u16
13	0x000C	DO1 配置	R/W	2	bit11-4:表示第几个 AMB300 在报警,如果有多个报警,优先提示最后的那个bit3:(0 断开,1 闭合)bit2-1:可配报警项(00 探头,01NTC,10 内湿,11 内温,仅在报警模式下生效)bit0:驱动模式(0 报警,1 遥控)	u16
14	0x000D	DO2 配置	R/W	2	bit11-4:表示第几个 AMB300 在报警,如果有多个报警,优先提示最后的那个bit3:(0 断开,1 闭合)bit2-1:可配报警项(00 探头,01NTC,10 内湿,11 内温,仅在报警模式下生效)bit0:驱动模式(0 报警,1 遥控)	u16
15	0x000E	预留	R/W	2		u16
16	0x000F	写序列号使能	R/W	2	port1: 0x66xx(xx 为从第几个开始) 始) port2: 0x88xx(xx 为从第几个开始)	u16
17	0x0010	语言	R/W	2	0: 中文 1: 英文	u16

从模块地址

1	port1		ŗ	ort2
地址	模块顺序		地址	模块顺序
0x0100	第1个模块		0x1000	第1个模块
0x0129	第2个模块		0x1029	第2个模块
0x0152	第3个模块		0x1052	第3个模块
0x017B	第4个模块		0x107B	第4个模块
0x01A4	第5个模块		0x10A4	第5个模块
0x01CD	第6个模块		0x10CD	第6个模块
0x01F6	第7个模块		0x10F6	第7个模块
0x021F	第8个模块		0x111F	第8个模块

0x0248	第 9 个模块		0x1148	第9个模块
0x0271	第10个模块		0x1171	第10个模块
0x029A	第11个模块		0x119A	第 11 个模块
0x02C3	第12个模块		0x11C3	第12个模块
0x02EC	第13个模块		0x11EC	第13个模块
0x0315	第 14 个模块	模块具体地址表	0x1215	第 14 个模块
0x033E	第 15 个模块	见"AMB300通讯协议"	0x123E	第 15 个模块
0x0367	第16个模块		0x1267	第 16 个模块
0x0390	第17个模块		0x1290	第17个模块
0x03B9	第 18 个模块		0x12B9	第 18 个模块
0x03E2	第19个模块		0x12E2	第19个模块
0x040B	第 20 个模块		0x130B	第 20 个模块
0x0434	第 21 个模块		0x1334	第 21 个模块
0x045D	第 22 个模块		0x135D	第 22 个模块
0x0486	第23个模块		0x1386	第23个模块
0x04AF	第 24 个模块		0x13AF	第 24 个模块
0x04D8	第 25 个模块		0x13D8	第 25 个模块
0x0501	第 26 个模块		0x1401	第 26 个模块
0x052A	第27个模块		0x142A	第 27 个模块
0x0553	第 28 个模块		0x1453	第 28 个模块
0x057C	第 29 个模块		0x147C	第 29 个模块
0x05A5	第 30 个模块		0x14A5	第 30 个模块
0x05CE	第 31 个模块		0x14CE	第 31 个模块
0x05F7	第32个模块		0x14F7	第 32 个模块
0x0620	第33个模块		0x1520	第 33 个模块
0x0649	第 34 个模块		0x1549	第 34 个模块
0x0672	第 35 个模块		0x1572	第 35 个模块
0x069B	第 36 个模块		0x159B	第 36 个模块
0x06C4	第37个模块		0x15C4	第 37 个模块
0x06ED	第 38 个模块		0x15ED	第 38 个模块
0x0716	第 39 个模块		0x1616	第 39 个模块
0x073F	第40个模块		0x163F	第40个模块
0x0768	第 41 个模块		0x1668	第 41 个模块
33.00	214 1 DCDC			>14 1 DCDC

0x0791	第 42 个模块	0x1691	第 42 个模块
0x07BA	第 43 个模块	0x16BA	第 43 个模块
0x07E3	第 44 个模块	0x16E3	第 44 个模块
0x080C	第 45 个模块	0x170C	第 45 个模块
0x0835	第 46 个模块	0x1735	第 46 个模块
0x085E	第 47 个模块	0x175E	第 47 个模块
0x0887	第 48 个模块	0x1787	第 48 个模块
0x08B0	第 49 个模块	0x17B0	第 49 个模块
0x08D9	第 50 个模块	0x17D9	第 50 个模块
0x0902	第 51 个模块	0x1802	第 51 个模块
0x092B	第 52 个模块	0x182B	第 52 个模块
0x0954	第 53 个模块	0x1854	第 53 个模块
0x097D	第 54 个模块	0x187D	第 54 个模块
0x09A6	第 55 个模块	0x18A6	第 55 个模块
0x09CF	第 56 个模块	0x18CF	第 56 个模块
0x09F8	第 57 个模块	0x18F8	第 57 个模块
0x0A21	第 58 个模块	0x1921	第 58 个模块
0x0A4A	第 59 个模块	0x194A	第 59 个模块
0x0A73	第 60 个模块	0x1973	第60个模块
0x0A9C	第 61 个模块	0x199C	第 61 个模块
0x0AC5	第 62 个模块	0x19C5	第 62 个模块
0x0AEE	第 63 个模块	0x19EE	第 63 个模块
0x0B17	第 64 个模块	0x1A17	第 64 个模块
0x0B40	第 65 个模块	0x1A40	第 65 个模块
0x0B69	第 66 个模块	0x1A69	第 66 个模块
0x0B92	第 67 个模块	0x1A92	第 67 个模块
0x0BBB	第 68 个模块	0x1ABB	第 68 个模块
0x0BE4	第 69 个模块	0x1AE4	第 69 个模块
0x0C0D	第 70 个模块	0x1B0D	第 70 个模块
0x0C36	第 71 个模块	0x1B36	第 71 个模块
0x0C5F	第 72 个模块	0x1B5F	第 72 个模块
0x0C88	第 73 个模块	0x1B88	第 73 个模块
0x0CB1	第74个模块	0x1BB1	第74个模块
0x0CDA	第 75 个模块	0x1BDA	第75个模块

0x0D03	第76个模块		0x1C03	第76个模块
0x0D2C	第77个模块		0x1C2C	第77个模块
0x0D55	第 78 个模块		0x1C55	第78个模块
0x0D7E	第79个模块		0x1C7E	第 79 个模块
0x0DA7	第80个模块		0x1CA7	第80个模块

AMB310 通讯报警地址表

	地址	R/W	长度 (字节)	数据类型		状态位						
					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	0x04000		2	16	从机 16	从机 15	从机 14	从机 13	从机 12	从机 11	从机 10	从机 9
	0x04000		Δ	u16	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		R			从机 8	从机 7	从机 6	从机 5	从机 4	从机 3	从机 2	从机 1
		Ν			Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	0x04001		2	u16	从机 32	从机 31	从机 30	从机 29	从机 28	从机 27	从机 26	从机 25
	0804001		2	uio	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					从机 24	从机 23	从机 22	从机 21	从机 20	从机 19	从机 18	从机 17
					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
				u16	从机 48	从机 47	从机 46	从机 45	从机 44	从机 43	从机 42	从机 41
	0x04002		2		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		R			从机 40	从机 39	从机 38	从机 37	从机 36	从机 35	从机 34	从机 33
从机第一路				10	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
通讯报警	0x04003		2		从机 64	从机 63	从机 62	从机 61	从机 60	从机 59	从机 58	从机 57
	0X04005		2	u16	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					从机 56	从机 55	从机 54	从机 53	从机 52	从机 51	从机 50	从机 49
					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	0x04004	R	2	u16	从机 80	从机 79	从机 78	从机 77	从机 76	从机 75	从机 74	从机 73
	0804004	K	2	uio	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					从机 72	从机 71	从机 70	从机 69	从机 68	从机 67	从机 66	从机 65
	地址	R/W	长度 (字节)	数据类型				状态	态位			
11 40 66 06					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
从机第二路 通讯报警	0x4010	R	2	u16	从机 16	从机 1	5 从机 14	4 从机 13	从机 12	从机 11	从机 10	从机 9
地加以					Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

					从机 8	从机 7	从机 6	从机 5	从机 4	从机 3	从机 2	从机 1	
						Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	0x4011		2	u16	从机 32	从机 31	从机 30	从机 29	从机 28	从机 27	从机 26	从机 25	
	0X4011		2	ulo	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					从机 24	从机 23	从机 22	从机 21	从机 20	从机 19	从机 18	从机 17	
					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
					从机 48	从机 47	从机 46	从机 45	从机 44	从机 43	从机 42	从机 41	
	0x4012		2	u16	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		R			从机 40	从机 39	从机 38	从机 37	从机 36	从机 35	从机 34	从机 33	
					Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	04012		2	1 <i>G</i>	从机 64	从机 63	从机 62	从机 61	从机 60	从机 59	从机 58	从机 57	
	0x4013		2	u16	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					从机 56	从机 55	从机 54	从机 53	从机 52	从机 51	从机 50	从机 49	
				2 u16	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	0x4014	4 R 2	9		从机 80	从机 79	从机 78	从机 77	从机 76	从机 75	从机 74	从机 73	
					Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					从机 72	从机 71	从机 70	从机 69	从机 68	从机 67	从机 66	从机 65	

AMB300 通讯参量地址表

序号	地址	变量	备注	长度 (字节)	单位	数据类型
1	0x0000	地址	R/W	2		u16
2	0x0001	类型	R 2 3		0: 矩阵 1: 四点 (mlx) 2: 单点 (mlx) 3: 四点 (mrtd) 4. 单点 (mrtd) 5: 未识别	u16
3	0x0002	波特率	R	2		u16
4	0x0003	校验位	R	2		u16
5	0x0004	探头温度报警阈值	R	2	0.1°C	s16
6	0x0005	备用	R	2		s16
7	0x0006	内部湿度报警阈值	R	2	0.1 %	u16
8	0x0007	内部温度报警阈值	R	2	0.1℃	u16
9	0x0008	内部温度	R	2	0.1℃	s16

10	0x0009	工作电压	R	2	0.1 V	u16	
11	0x000A	湿度	R	2	0.1 %	u16	
12	0x000B	备用	R	2		u16	
13	0x000C	备用	R	2		s16	
14	0x000D	单点1	R	2	0.1℃	s16	
15	0x000E	单点 2	R	2	0.1℃	s16	
16	0x000F	单点3	R	2	0.1℃	s16	
17	0x0010	单点4	R	2	0.1℃	s16	
18	0x0011	单点 MAX	R	2	0.1℃	s16	
19	0x12-0x21	矩阵平均 16 个点	R	32	0.1℃	s16	
20	0x0022	矩阵平均 MAX1	R	2	MAX (1>2>3>4)	s16	
21	0x0023	矩阵平均 MAX2	R	2	0.1℃	s16	
22	0x0024	矩阵平均 MAX3	R	2	0.1℃	s16	
23	0x0025	矩阵平均 MAX4	R	2	0.1℃	s16	
24	0x0026	备用	R	2		u16	
25	0x0027	发射率	R	4	默认为1	float	
26	0x0028	<u> </u>	N	4		float	

6.5 通讯应用

本节所举实例尽可能采用下表格式(数据为16进制)

Addr	Fun	Data start		Data	#of	CRC16		
Addi	run	reg Hi	reg Lo	reg Hi	reg Lo	Lo	Hi	
01Н	03Н	ООН	ООН	00Н	06Н	CRC_L	CRC_H	
地址	功能码	数据起始地址		数据读取个数		循环冗余检验码		

6.5.1 读数据

例1:读A温度数据

查询数据帧	01 03 00 1D 00 01 14 0C
返回数据帧	01 03 02 01 0E 38 10

说明:

01: 从机地址

03: 功能码

04: 十六进制,十进制为4,表示后面有4个字节的数据

5a50: 循环冗余校验码

数据处理方法见: 6.4 通讯参量地址表

处理如下: 010E(16 进制)=270(10 进制) 温度为 27.0℃

6.5.2 写数据

例 2: 设置第一路采集器地址(控制字: 0008H)

写入数据帧	01 10 00 00 00 01 02 00 02 27 91
返回数据帧	01 10 00 00 00 01 01 C9

说明:

对地址 0 写入 2,则第一路地址变为 2。

7 常见故障的诊断、排查方法

7.1 装置上电后工作不正常

*重新对装置上电,拆除装置保险底座后重新安装。

7.2 RS-485 通信不正常

- *检查上位机的通信波特率、ID 和通讯规约设置是否与装置一致;
- *请检查数据位、停止位、校验位的设置和上位机是否一致;
- *检查 RS-232/RS-485 转换器是否正常;
- *检查整个通信网线路有无问题(短路、断路、接地、屏蔽线是否正确单端接地等);
- *关闭装置和上位机,再重新开机;
- *通讯线路长建议在通讯线路的末端并联约100~200 欧的匹配电阻。

7.3 无线通信不正常

- *检查无线主站的通讯频段设置是否与装置一致;
- *检查现场是否存在无线频段的同频干扰;
- *检查所需主站的通讯频段无线网络信号是否覆盖到设备;
- *关闭装置和上位机,再重新开机。

说明书修订记录

日期	旧版本	新版本	修改内容
2022. 10. 12	V1. 0	V1. 1	1、修改 AMB310 的功能描述; 2、修改 AMB300 各型号的 NTC 测温范围; 3、增加手动编址界面说明; 4、地址表更新。
2024. 1. 22	V1. 1	V1. 2	1、新增序列号编址相关内容; 2、更新 AMB310 显示屏显示; 3、更新自定义起始地址编址;

总部:安科瑞电气股份有限公司

地址: 上海市嘉定区育绿路 253 号

电话: 0086-21-69158338 0086-21-69156052 0086-21-59156392 0086-21-69156971

传真: 0086-21-69158303

网址: www.acrel.cn

邮箱: ACRELO01@vip. 163. com

邮编: 201801

生产基地: 江苏安科瑞电器制造有限公司

地址: 江苏省江阴市南闸街道东盟工业园区东盟路 5 号

电话: 0086-510-86179966

传真: 0086-510-86179975

网址: www.jsacrel.cn

邮箱: sales@email.acrel.cn

邮编: 214405